Solveeit Logo

Question

Question: The maximum value of \(3\cos \theta + 5\sin \left( {\theta - \dfrac{\pi }{6}} \right)\) for any real...

The maximum value of 3cosθ+5sin(θπ6)3\cos \theta + 5\sin \left( {\theta - \dfrac{\pi }{6}} \right) for any real value of θ\theta is:
A 792\dfrac{{\sqrt {79} }}{2}
B 31\sqrt {31}
C 19\sqrt {19}
D 34\sqrt {34}

Explanation

Solution

In this question we need to find out the value of 3cosθ+5sin(θπ6)3\cos \theta + 5\sin \left( {\theta - \dfrac{\pi }{6}} \right), for that firstly we need to use the formula:sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B. After that we will put the values and as we need to find the maximum value, so for that we will be using the formula:a2+b2\sqrt {{a^2} + {b^2}} .

Complete step by step answer:
We have been provided that we need to find the value of 3cosθ+5sin(θπ6)3\cos \theta + 5\sin \left( {\theta - \dfrac{\pi }{6}} \right),
So, firstly we will be using the formula: sin(AB)=sinAcosBcosAsinB\sin (A - B) = \sin A\cos B - \cos A\sin B for simplification,
Now the equation becomes: 3cosθ+5(sinθ.cos(π6)cosθ.sin(π6))3\cos \theta + 5\left( {\sin \theta .\cos \left( {\dfrac{\pi }{6}} \right) - \cos \theta .\sin \left( {\dfrac{\pi }{6}} \right)} \right),
As we know the value of cosπ6=32\cos \dfrac{\pi }{6} = \dfrac{{\sqrt 3 }}{2} and sinπ6=12\sin \dfrac{\pi }{6} = \dfrac{1}{2},
Now put these values in 3cosθ+5(sinθ.cos(π6)cosθ.sin(π6))3\cos \theta + 5\left( {\sin \theta .\cos \left( {\dfrac{\pi }{6}} \right) - \cos \theta .\sin \left( {\dfrac{\pi }{6}} \right)} \right),
So, the equation becomes: 3cosθ+5(sinθ.32cosθ.12)3\cos \theta + 5\left( {\sin \theta .\dfrac{{\sqrt 3 }}{2} - \cos \theta .\dfrac{1}{2}} \right),
Now open the brackets, and write the terms of sinθ\sin \theta and cosθ\cos \theta separately,
This will result in: (532)sinθ+(352)cosθ\left( {\dfrac{{5\sqrt 3 }}{2}} \right)\sin \theta + \left( {3 - \dfrac{5}{2}} \right)\cos \theta ,
Simplifying the above equation, we will get: (532)sinθ+12cosθ\left( {\dfrac{{5\sqrt 3 }}{2}} \right)\sin \theta + \dfrac{1}{2}\cos \theta ,
Now we have got the equation in the form:acosθ+bsinθa\cos \theta + b\sin \theta ,
And for finding the maximum value we will be using the formula: a2+b2\sqrt {{a^2} + {b^2}} ,
So, the maximum value for 3cosθ+5sin(θπ6)3\cos \theta + 5\sin \left( {\theta - \dfrac{\pi }{6}} \right):(12)2+(532)2\sqrt {{{\left( {\dfrac{1}{2}} \right)}^2} + {{\left( {\dfrac{{5\sqrt 3 }}{2}} \right)}^2}} ,
Simplifying the above values:75+14=19\sqrt {\dfrac{{75 + 1}}{4}} = \sqrt {19} .
So, the maximum value comes out to be:19\sqrt {19} .

So, the correct answer is “Option C”.

Note: In this question do not get confused with the formula of maximum and minimum value as both the formulas are almost the same. For finding maximum value the formula used is:a2+b2\sqrt {{a^2} + {b^2}} and that for finding minimum value is: a2+b2- \sqrt {{a^2} + {b^2}}, so be careful with this.