Solveeit Logo

Question

Science Question on Electricity

The maximum resistance of a network of five identical resistors of 15\frac{1}{5} Ω\Omega each can be –

A

1 Ω\Omega

B

0.5 Ω\Omega

C

0.25 Ω\Omega

D

0.1 Ω\Omega

Answer

1 Ω\Omega

Explanation

Solution

To achieve the maximum resistance, all the resistors should be connected in \textbf{series}. In a series combination:
Rtotal=R1+R2+R3+R4+R5.R_{\text{total}} = R_1 + R_2 + R_3 + R_4 + R_5.
Given that each resistor has a resistance of R=15ΩR = \frac{1}{5} \, \Omega:
Rtotal=15+15+15+15+15.R_{\text{total}} = \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5} + \frac{1}{5}.
Simplify the addition:
Rtotal=55=1Ω.R_{\text{total}} = \frac{5}{5} = 1 \, \Omega.
Thus, the maximum resistance of the network is 1Ω1 \, \Omega.