Solveeit Logo

Question

Question: The maximum refractive index of a prism which permits passage of the light through it when the refra...

The maximum refractive index of a prism which permits passage of the light through it when the refracting angle of the prism is 90°, is:
(A) 12\dfrac{{\text{1}}}{{\sqrt {\text{2}} }}
(B) 2\sqrt 2
(C) 32\sqrt {\dfrac{3}{2}}
(D) 32\dfrac{3}{2}

Explanation

Solution

Firstly, use the formula for refractive index μ=1sin(θC)\mu = \dfrac{1}{{\sin \left( {{\theta _C}} \right)}} and critical angle θC=90r{\theta _C} = 90 - r to find out sin(r) in terms of refractive index, μ\mu. Secondly, use the other formula for refractive index μ=sinisinr\mu = \dfrac{{\sin i}}{{\sin r}} to find out sin(i) in terms of refractive index, μ\mu .
Lastly, use the inequality sin(i) ≤ 1, to find out the value of maximum refractive index, μ\mu .

Complete step by step solution

Let the angle of refraction be r and the critical angle for the prism be θC{\theta _C}. Now using the formula for refractive index in terms of the critical angle, θC{\theta _C}:
μ=1sin(θC)\mu = \dfrac{1}{{\sin \left( {{\theta _C}} \right)}}
Putting θC{\theta _C}= 90 – r in the above equation,
μ=1sin(90r)\Rightarrow \mu = \dfrac{1}{{\sin \left( {90 - r} \right)}}
We know that sin(90r)=cosr\sin (90 - r) = \cos r (from trigonometry). Putting this in the above equation,
μ=1cosr cosr=1μ  \Rightarrow \mu = \dfrac{1}{{\cos r}} \\\ \Rightarrow \cos r = \dfrac{1}{\mu } \\\
Putting the value of cos(r) from the above equation in the general trigonometry relation:
sinr=1cos2r\sin r = \sqrt {1 - {{\cos }^2}r} gives us,

sinr=1(1μ)2 sinr=(μ21μ2) sinr=μ21μ  \Rightarrow \sin r = \sqrt {1 - {{\left( {\dfrac{1}{\mu }} \right)}^2}} \\\ \Rightarrow \sin r = \sqrt {\left( {\dfrac{{{\mu ^2} - 1}}{{{\mu ^2}}}} \right)} \\\ \Rightarrow \sin r = \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\\

Now, another formula for the refractive index is, μ=sinisinr\mu = \dfrac{{\sin i}}{{\sin r}} where ‘i' is the angle of incidence.
sini=μ×sinr\Rightarrow \sin i = \mu \times \sin r
Now putting our value of sin(r) in the above equation,

sini=μ×μ21μ sini=μ21  \Rightarrow \sin i = \mu \times \dfrac{{\sqrt {{\mu ^2} - 1} }}{\mu } \\\ \Rightarrow \sin i = \sqrt {{\mu ^2} - 1} \\\

and also, sini<1\sin i < 1.
μ211 μ211 μ22 μ2  \Rightarrow \sqrt {{\mu ^2} - 1} \leqslant 1 \\\ \Rightarrow {\mu ^2} - 1 \leqslant 1 \\\ \Rightarrow {\mu ^2} \leqslant 2 \\\ \Rightarrow \mu \leqslant \sqrt 2 \\\
Therefore, the maximum value of the refractive index will be equal to 2\sqrt 2 .

Hence, option (B) is correct.

Note: We are given the refracting angle of the prism to be 90° in the question. So, alternatively as a shortcut method, we can just put this in the other formula of refractive index, μ=sin(A+δmin)sin(A2)\mu = \dfrac{{\sin (A + \delta \min )}}{{\sin \left( {\dfrac{A}{2}} \right)}}.
Where, A will be 90° and δmin\delta \min will be zero.
μ=sin(90)sin(45) μ=112 μ=2  \Rightarrow \mu = \dfrac{{\sin (90)}}{{\sin \left( {45} \right)}} \\\ \Rightarrow \mu = \dfrac{1}{{\dfrac{1}{{\sqrt 2 }}}} \\\ \Rightarrow \mu = \sqrt 2 \\\