Solveeit Logo

Question

Question: The maximum range of a bullet fired from a toy pistol mounted on a car at rest \[{R_0} = 40m\]. What...

The maximum range of a bullet fired from a toy pistol mounted on a car at rest R0=40m{R_0} = 40m. What will be the acute angle of inclination of the pistol for maximum range when the car is moving in the direction of firing with uniform velocity v=20msv = \dfrac{{20m}}{s} on a horizontal surface? (g=10ms2g = \dfrac{{10m}}{{{s^2}}})
(A) 3030^\circ
(B) 6060^\circ
(C) 7575^\circ
(D) 4545^\circ

Explanation

Solution

Solve this question from two frames of references. Firstly, from the car as frame of reference calculate the velocity of the projectile (gun) and then from ground as a frame of reference, calculate the condition of the maximum range- that will give us the value of the projectile angle.

Complete Step-by-step Solution:
When the car is at rest: The piston is shot with initial velocity uu. In calculating range, the horizontal component of velocity will come to play i.e. ucosθu\cos \theta ucosθu\cos \theta
The range of a projectile is given by-
R=2usinθucosθgR = \dfrac{{2u\sin \theta u\cos \theta }}{g}
R=u2sin2θgR = \dfrac{{{u^2}\sin 2\theta }}{g}
For range to be maximum –
sin2θ=1\sin 2\theta = 1
2θ=π2\Rightarrow 2\theta = \dfrac{\pi }{2}
θ=π4\Rightarrow \theta = \dfrac{\pi }{4}
We have the maximum range:
Rmax=R0=u2g{R_{\max }} = {R_0} = \dfrac{{{u^2}}}{g}
40=u210\Rightarrow 40 = \dfrac{{{u^2}}}{{10}}
u2=400\Rightarrow {u^2} = 400
u=20ms\Rightarrow u = \dfrac{{20m}}{s}
When the car is moving: we will take ground as a frame of reference.
In ground frame:
R=2uxuyg\Rightarrow R = \dfrac{{2{u_x}{u_y}}}{g}
R=2(20+ucosθ)usinθg\Rightarrow R = \dfrac{{2(20 + u\cos \theta )u\sin \theta }}{g}
For the range to be maximum, its derivative with respect to angle will be zero.
dRdθ=0 R=2(20usinθ+u2sinθcosθ)g dRdθ=2(20ucosθ+u2(cos2θsin2θ)g dRdθ=2(20ucosθ+u2(2cos2θ1))g dRdθ=0 20cosθ+u(2cos2θ1)=0 20cosθ+20(2cos2θ1)=0 cosθ+2cos2θ1=0 cosθ=1,12 cosθ=12 θ=60  \Rightarrow \dfrac{{dR}}{{d\theta }} = 0 \\\ \Rightarrow R = \dfrac{{2(20u\sin \theta + {u^2}\sin \theta \cos \theta )}}{g} \\\ \Rightarrow \dfrac{{dR}}{{d\theta }} = \dfrac{{2(20u\cos \theta + {u^2}({{\cos }^2}\theta - {{\sin }^2}\theta )}}{g} \\\ \Rightarrow \dfrac{{dR}}{{d\theta }} = \dfrac{{2(20u\cos \theta + {u^2}(2{{\cos }^2}\theta - 1))}}{g} \\\ \Rightarrow \dfrac{{dR}}{{d\theta }} = 0 \\\ \Rightarrow 20\cos \theta + u(2{\cos ^2}\theta - 1) = 0 \\\ \Rightarrow 20\cos \theta + 20(2{\cos ^2}\theta - 1) = 0 \\\ \Rightarrow \cos \theta + 2{\cos ^2}\theta - 1 = 0 \\\ \Rightarrow \cos \theta = - 1,\dfrac{1}{2} \\\ \Rightarrow \cos \theta = \dfrac{1}{2} \\\ \Rightarrow \theta = 60^\circ \\\
The required inclination is 6060^\circ .

Hence, the correct option is B.

Note- In determining the maximum range, the horizontal component is used. In determining the vertical height, the vertical component of velocity is used.