Solveeit Logo

Question

Question: The maximum possible number of real roots of equation \(x^{5} - 6x^{2} - 4x + 5 = 0\) is...

The maximum possible number of real roots of equation x56x24x+5=0x^{5} - 6x^{2} - 4x + 5 = 0 is

A

0

B

3

C

4

D

5

Answer

3

Explanation

Solution

f(x)=x56x24x+5=0f(x) = x^{5} - 6x^{2} - 4x + 5 = 0

+ – – +

2 changes of sign ⇒ maximum two positive roots.

f(x)=x56x2+4x+5f( - x) = - x^{5} - 6x^{2} + 4x + 5

– – + +

1 changes of sign ⇒ maximum one negative roots.

⇒ total maximum possible number of real roots = 2 + 1 = 3.