Solveeit Logo

Question

Physics Question on Wave characteristics

The maximum particle velocity in a wavemotion is half the wave velocity. Then the amplitude of the wave is equal to

A

λ \lambda

B

λ2π\frac {\lambda}{2 \pi}

C

2λπ\frac {2\lambda}{\pi}

D

λ4π\frac {\lambda}{4 \pi}

Answer

λ4π\frac {\lambda}{4 \pi}

Explanation

Solution

For a wave,
y=asin2πλ(vtx)(i)y = a \sin \frac{2\pi}{\lambda} \left(vt - x\right)\,\,\,\,\dots(i)
Differentiating Eq (i) w.r.t. t, we get
dydt=2πvaλcos2πλ(vtx)\frac{dy}{dt} = \frac{2\pi va}{\lambda} \cos \frac{2\pi}{\lambda} \left(vt -x\right)
Now, maximum velocity is obtained when
cos2πλ(vtx)=1\cos \frac{2\pi}{\lambda} \left(vt -x\right) =1
vmax=(dydt)max=2πvaλ\therefore v_{max } = \left(\frac{dy}{dt}\right)_{max } = \frac{2\pi v a}{\lambda}
but vmax=v2v_{max } = \frac{v}{2} (given)
v2=2πvaλ\therefore \frac{v}{2} = \frac{2\pi va}{\lambda}
a=λ4π\Rightarrow a = \frac{\lambda}{4\pi}