Solveeit Logo

Question

Physics Question on projectile motion

The maximum height reached by a projectile is 64 m. If the initial velocity is halved, the new maximum height of the projectile is ______ m.

Answer

The maximum height of a projectile is given by:

Hmax=u2sin2θ2g,H_{\text{max}} = \frac{u^2 \sin^2 \theta}{2g},

where:
- uu is the initial velocity,
- θ\theta is the angle of projection,
- gg is the acceleration due to gravity.

Step 1: Relationship between maximum heights
If the initial velocity is halved, i.e., u=u2u' = \frac{u}{2}, the new maximum height H2maxH_{2\text{max}} can be expressed as:

H1maxH2max=u2u2.\frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{u'^2}.

Substitute u=u2u' = \frac{u}{2}:

H1maxH2max=u2(u2)2.\frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\left( \frac{u}{2} \right)^2}.

Step 2: Simplify the expression
Simplify (u2)2\left( \frac{u}{2} \right)^2:

H1maxH2max=u2u24=4.\frac{H_{1\text{max}}}{H_{2\text{max}}} = \frac{u^2}{\frac{u^2}{4}} = 4.

Thus:

H2max=H1max4.H_{2\text{max}} = \frac{H_{1\text{max}}}{4}.

Step 3: Calculate the new maximum height
Substitute H1max=64mH_{1\text{max}} = 64 \, \text{m}:

H2max=644=16m.H_{2\text{max}} = \frac{64}{4} = 16 \, \text{m}.

Therefore, the new maximum height of the projectile is H2max=16mH_{2\text{max}} = 16 \, \text{m}.