Solveeit Logo

Question

Physics Question on Motion in a plane

The maximum height reached by a projectile is 4 m. The horizontal range is 12 m. Velocity of projection in ms-1, is : ( g = acceleration due to gravity)

A

5g25\sqrt{\frac{g}{2}}

B

5g25\frac{g}{\sqrt{2}}

C

13g2\frac{1}{3}\frac{g}{\sqrt{2}}

D

15g2\frac{1}{5}\sqrt{\frac{g}{2}}

Answer

5g25\sqrt{\frac{g}{2}}

Explanation

Solution

Given: Height of projectile H = 4m Horizontal range R = 12 m Height of projectile is H=u2sin2θ2gH=\frac{{{u}^{2}}{{\sin }^{2}}\theta }{2g} ?(i) Pange of projectile is R=u2sin2θgR=\frac{{{u}^{2}}\sin 2\theta }{g} ?(ii) Dividing equation (i) by (ii), also putting given value, we get =HR=u2sinθ2g/u2sin2θg=\frac{H}{R}=\frac{{{u}^{2}}\sin \theta }{2g}/\frac{{{u}^{2}}\sin 2\theta }{g} =u2sinθ2g×gu22sinθcosθ=\frac{{{u}^{2}}\sin \theta }{2g}\times \frac{g}{{{u}^{2}}2\sin \theta \cos \theta } 412=tanθ4\frac{4}{12}=\frac{\tan \theta }{4} or tanθ=4×412=43\tan \theta =\frac{4\times 4}{12}=\frac{4}{3} So, sinθ=45\sin \theta =\frac{4}{5} Now, putting H=4mH=4\,m and sinθ=45s\sin \theta =\frac{4}{5}s in E (i) we get H=u2×1652gH=\frac{{{u}^{2}}\times \frac{16}{5}}{2g} or 4=u2×16/252g4=\frac{{{u}^{2}}\times 16/25}{2g} u2=4×2g×2516{{u}^{2}}=4\times 2g\times \frac{25}{16} Hence, u=5g2m/su=5\sqrt{\frac{g}{2}}m/s