Solveeit Logo

Question

Physics Question on projectile motion

The maximum height attained by a projectile when thrown at an angle θ\theta with the horizontal is found to be half the horizontal range. Then θ\theta =

A

tan112tan^{-1} \frac {1}{2}

B

π4\frac {\pi} {4}

C

π6\frac {\pi} {6}

D

tan1(2)tan^{-1} (2)

Answer

tan1(2)tan^{-1} (2)

Explanation

Solution

Maximum height, H0=u2sin2θ2gH_{0}=\frac{u^{2} \sin _{2} \theta}{2 g}
Range, R=u2sin2θg R=\frac{u^{2} \sin 2 \theta}{g}
Given, H0=R2 H_{0}=\frac{R}{2}
u2sin2θ2g=u22sinθcosθ2g\therefore \frac{u^{2} \sin ^{2} \theta}{2 g}=\frac{u^{2} 2 \sin \theta \cos \theta}{2 g}
sinθ=2cosθ\Rightarrow \sin \theta=2 \cos \theta
tanθ=2\Rightarrow \tan \theta=2
θ=tan1(2)\therefore \theta=\tan ^{-1}(2)