Solveeit Logo

Question

Mathematics Question on Statistics

The maximum area of a rectangle which can be inscribed in an ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 is

A

a2+b2a^2 + b^2

B

(a+b)22 \frac{(a + b)^2}{2}

C

2ab2ab

D

(a2+b2)22ab\frac{(a^2 + b^2)^2}{2ab}

Answer

2ab2ab

Explanation

Solution

x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
Area of rectangle ABCD=(2acosθ)(2bsinθ)ABCD = (2a \cos \theta)(2b \sin \theta)
=2absin2θ\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, =2 ab \, \sin 2\theta
This is max. when sin2θ=1\sin 2\theta = 1
\therefore Max. area = 2ab2ab.