Solveeit Logo

Question

Mathematics Question on Approximations

The maximum area of a rectangle inscribed in the circle (x+1)2+(y3)2=64(x + 1)^2 + (y - 3)^2 = 64 is

A

64 s units

B

72 s units

C

128 s units

D

8 s units

Answer

128 s units

Explanation

Solution

The area of a rectangle inscribed in a circle is maximum, when it is a square
The area of a rectangle inscribed in a circle is maximum, when it is a square.
( diagonal )2=( side )2+( side )2\Rightarrow(\text { diagonal })^{2}=(\text { side })^{2}+(\text { side })^{2}
\Rightarrow (diameter) 2=2^{2}=2 (side) 2^{2}
(because diagonal = diameter)
(16)22=( side )2\Rightarrow \frac{(16)^{2}}{2}=(\text { side })^{2}
\therefore Area =128=128 s units