Solveeit Logo

Question

Mathematics Question on Ellipse

The maximum area in square units of an isosceles triangle inscribed in an ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 with its vertex at one end of the major axis is

A

3ab\sqrt{3} ab

B

334ab\frac{3\sqrt{3}}{4} ab

C

534ab\frac{5\sqrt{3}}{4} ab

D

NoneoftheseNone\, of\, these

Answer

334ab\frac{3\sqrt{3}}{4} ab

Explanation

Solution

Let ΔABC\Delta ABC be an isosceles triangle inscribed in the ellipse x2a2+y2b2=1\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
Let co-ordinate of AA be (a,0)(a, 0)
Area of ΔABC\Delta ABC is
A=12×AD×BCA = \frac{1}{2} \times AD \times BC
=12×(a+x)×2y=y(a+x)= \frac{1}{2} \times\left(a+x\right)\times2y =y\left(a+x\right)
=b2(1x2a2)(a+x)=baa2x2(a+x)=\sqrt{b^{2}\left(1-\frac{x^{2}}{a^{2}}\right)} \left(a+x\right) =\frac{b}{a} \sqrt{a^{2} -x^{2}} \left(a+x\right)
dAdx=ba[(a+x).12×2xa2x2+a2x2]\Rightarrow \frac{dA}{dx} =\frac{b}{a} \left[\left(a+x\right) . \frac{1}{2} \times\frac{-2x}{\sqrt{a^{2}-x^{2}}} +\sqrt{a^{2} -x^{2}}\right]
=ba[x(a+x)+(a2x2)a2x2]=\frac{b}{a} \left[\frac{-x\left(a+x\right)+\left(a^{2} -x^{2}\right)}{\sqrt{a^{2}-x^{2}}} \right]
Put dAax=0\frac{dA}{ax} = 0
2x2+axa2=0\Rightarrow\: 2x^2 + ax - a^2 = 0
2x2+2axaxa2=0\Rightarrow \: 2x^2 + 2ax - ax - a^2 = 0
(2xa)(x+a)=0\Rightarrow\: (2x - a) (x + a) = 0
x=a2,a\Rightarrow\: x= \frac{a}{2} , - a

Since d2Adx2<0\frac{d^2A}{dx^2} < 0 for x=a2x = \frac{a}{2}
\therefore Max. Area =ba.(a+a2)a2a24= \frac{b}{a} . \left( a + \frac{a}{2} \right) \sqrt{a^2 - \frac{a^2}{4}}
=ba.32a.3a2=33ab4=\frac{b}{a} . \frac{3}{2}a. \frac{\sqrt{3}a}{2} =\frac{3\sqrt{3} ab}{4} sunits