Question
Mathematics Question on Ellipse
The maximum area in square units of an isosceles triangle inscribed in an ellipse a2x2+b2y2=1 with its vertex at one end of the major axis is
A
3ab
B
433ab
C
453ab
D
Noneofthese
Answer
433ab
Explanation
Solution
Let ΔABC be an isosceles triangle inscribed in the ellipse a2x2+b2y2=1
Let co-ordinate of A be (a,0)
Area of ΔABC is
A=21×AD×BC
=21×(a+x)×2y=y(a+x)
=b2(1−a2x2)(a+x)=aba2−x2(a+x)
⇒dxdA=ab[(a+x).21×a2−x2−2x+a2−x2]
=ab[a2−x2−x(a+x)+(a2−x2)]
Put axdA=0
⇒2x2+ax−a2=0
⇒2x2+2ax−ax−a2=0
⇒(2x−a)(x+a)=0
⇒x=2a,−a
Since dx2d2A<0 for x=2a
∴ Max. Area =ab.(a+2a)a2−4a2
=ab.23a.23a=433ab sunits