Solveeit Logo

Question

Question: The maximum and minimum values of \(x^{3} - 18x^{2} + 96\) in interval (0, 9) are...

The maximum and minimum values of x318x2+96x^{3} - 18x^{2} + 96 in interval (0, 9) are

A

160, 0

B

60, 0

C

160, 128

D

120, 28

Answer

160, 128

Explanation

Solution

Let y=x318x2+96xdydx=3x236x+96=0y = x^{3} - 18x^{2} + 96x \Rightarrow \frac{dy}{dx} = 3x^{2} - 36x + 96 = 0

\therefore x212x+32=0x^{2} - 12x + 32 = 0(x4)(x8)=0,x=4,8(x - 4)(x - 8) = 0,x = 4,8

Now, d2ydx2=6x36\frac{d^{2}y}{dx^{2}} = 6x - 36 at x=4,d2ydx2=2436=12<0x = 4,\frac{d^{2}y}{dx^{2}} = 24 - 36 = - 12 < 0

\therefore at x=4x = 4 function will be maximum and

[f(x)]max.\lbrack f(x)\rbrack_{max.} at

x=8d2ydx2=4836=12>0x = 8\frac{d^{2}y}{dx^{2}} = 48 - 36 = 12 > 0

\therefore at x=8x = 8 function will be minimum and [f(x)]min.\lbrack f(x)\rbrack_{min.}.