Question
Question: The maximum and minimum values of \(x^{3} - 18x^{2} + 96\) in interval (0, 9) are...
The maximum and minimum values of x3−18x2+96 in interval (0, 9) are
A
160, 0
B
60, 0
C
160, 128
D
120, 28
Answer
160, 128
Explanation
Solution
Let y=x3−18x2+96x⇒dxdy=3x2−36x+96=0
∴ x2−12x+32=0 ⇒ (x−4)(x−8)=0,x=4,8
Now, dx2d2y=6x−36 at x=4,dx2d2y=24−36=−12<0
∴ at x=4 function will be maximum and
[f(x)]max. at
x=8dx2d2y=48−36=12>0
∴ at x=8 function will be minimum and [f(x)]min..