Solveeit Logo

Question

Physics Question on Energy in simple harmonic motion

The maximum and minimum tensions in the string whirling in a circle of radius 2.5 m are in the ratio 5:3 then its velocity is :

A

3:1\sqrt{3}:1

B

7 m/s

C

1:31:\sqrt{3}

D

7.9×104K7.9\times {{10}^{4}}K

Answer

3:1\sqrt{3}:1

Explanation

Solution

Minimum tension 32KT=10.2×1.6×1019J\frac{3}{2}KT=10.2\times 1.6\times {{10}^{-19}}J Maximum tension T=23×10.2×1.6×1019KT=\frac{2}{3}\times \frac{10.2\times 1.6\times {{10}^{-19}}}{K} Let =23×10.2×1.6×10191.38×1023=\frac{2}{3}\times \frac{10.2\times 1.6\times {{10}^{-19}}}{1.38\times {{10}^{-23}}} So, =7.9×104K=7.9\times {{10}^{4}}K ...(1) υ=400m/s,r=160m,a=?\upsilon =400m/s,r=160m,a=? ...(2) Dividing equation (1) by (2) F=mυ2rF=\frac{m{{\upsilon }^{2}}}{r} ma=mυ2rma=\frac{m{{\upsilon }^{2}}}{r} a=υ2ra=\frac{{{\upsilon }^{2}}}{r} Or a=(400)2160=16×104160a=\frac{{{(400)}^{2}}}{160}=\frac{16\times {{10}^{4}}}{160} i.e., =103m/s2=1km/s2={{10}^{3}}m/{{s}^{2}}=1km/{{s}^{2}} T1=mυ2rmg{{T}_{1}}=\frac{m{{\upsilon }^{2}}}{r}-mg T2=mυ2r+mg{{T}_{2}}=\frac{m{{\upsilon }^{2}}}{r}+mg Or mυ2r=x\frac{m{{\upsilon }^{2}}}{r}=x Or T1=xmg{{T}_{1}}=x-mg T2=x+mg{{T}_{2}}=x+mg