Solveeit Logo

Question

Question: The maximum and minimum distances of a comet from the Sun are 1.6 × 10$^{12}$ m and 8.0 × 10$^{10}$ ...

The maximum and minimum distances of a comet from the Sun are 1.6 × 1012^{12} m and 8.0 × 1010^{10} m respectively. If the speed of the comet at the nearest point is 6 × 104^4 ms1^{-1}, the speed at the farthest point is:

Answer

3000 m/s

Explanation

Solution

Using conservation of angular momentum,

vminrmin=vmaxrmaxv_{\min} \, r_{\min} = v_{\max} \, r_{\max}

Thus,

vmax=vminrminrmax=6×104×8.0×10101.6×1012v_{\max} = \frac{v_{\min} \, r_{\min}}{r_{\max}} = \frac{6 \times 10^4 \times 8.0 \times 10^{10}}{1.6 \times 10^{12}}

Simplify:

8.0×10101.6×1012=5×102\frac{8.0 \times 10^{10}}{1.6 \times 10^{12}} = 5 \times 10^{-2}

Then,

vmax=6×104×5×102=3000m/sv_{\max} = 6 \times 10^4 \times 5 \times 10^{-2} = 3000 \, \text{m/s}

Explanation (minimal):
Conservation of angular momentum gives vminrmin=vmaxrmaxv_{\min}r_{\min} = v_{\max}r_{\max}. Substitute values and simplify to find vmax=3000m/sv_{\max} = 3000 \, \text{m/s}.