Solveeit Logo

Question

Question: The matrix \(\begin{bmatrix} 2 & \lambda & - 4 \\ - 1 & 3 & 4 \\ 1 & - 2 & - 3 \end{bmatrix}\)is no...

The matrix $\begin{bmatrix} 2 & \lambda & - 4 \

  • 1 & 3 & 4 \ 1 & - 2 & - 3 \end{bmatrix}$is non singular if
A

λ2\lambda \neq - 2

B

λ2\lambda \neq 2

C

λ3\lambda \neq 3

D

λ3\lambda \neq - 3

Answer

λ2\lambda \neq - 2

Explanation

Solution

The given matrix $A = \begin{bmatrix} 2 & \lambda & - 4 \

  • 1 & 3 & 4 \ 1 & - 2 & - 3 \end{bmatrix}$is non singular.

If |A| ≠ 0

⇒$|A| = \left| \begin{matrix} 2 & \lambda & - 4 \

  • 1 & 3 & 4 \ 1 & - 2 & - 3 \end{matrix} \right| \neq 0\left| \begin{matrix} 1 & \lambda + 3 & 0 \
  • 1 & 3 & 4 \ 1 & - 2 & - 3 \end{matrix} \right| \neq 0\lbrack R_{1} \rightarrow R_{1} + R_{2}\rbrack$

A=[1λ+300110λ53]0,[R2R2+R3R3R3R1]|A| = \begin{bmatrix} 1 & \lambda + 3 & 0 \\ 0 & 1 & 1 \\ 0 & - \lambda - 5 & - 3 \end{bmatrix} \neq 0,\begin{bmatrix} R_{2} \rightarrow & R_{2} + R_{3} \\ R_{3} \rightarrow & R_{3} - R_{1} \end{bmatrix}

1(3+λ+5)01( - 3 + \lambda + 5) \neq 0λ+20\lambda + 2 \neq 0λ2\lambda \neq - 2