Question
Question: The matrix \(\begin{bmatrix} 2 & \lambda & - 4 \\ - 1 & 3 & 4 \\ 1 & - 2 & - 3 \end{bmatrix}\)is no...
The matrix $\begin{bmatrix} 2 & \lambda & - 4 \
- 1 & 3 & 4 \ 1 & - 2 & - 3 \end{bmatrix}$is non singular if
A
λ=−2
B
λ=2
C
λ=3
D
λ=−3
Answer
λ=−2
Explanation
Solution
The given matrix $A = \begin{bmatrix} 2 & \lambda & - 4 \
- 1 & 3 & 4 \ 1 & - 2 & - 3 \end{bmatrix}$is non singular.
If |A| ≠ 0
⇒$|A| = \left| \begin{matrix} 2 & \lambda & - 4 \
- 1 & 3 & 4 \ 1 & - 2 & - 3 \end{matrix} \right| \neq 0⇒\left| \begin{matrix} 1 & \lambda + 3 & 0 \
- 1 & 3 & 4 \ 1 & - 2 & - 3 \end{matrix} \right| \neq 0\lbrack R_{1} \rightarrow R_{1} + R_{2}\rbrack$
⇒ ∣A∣=100λ+31−λ−501−3=0,[R2→R3→R2+R3R3−R1]
⇒ 1(−3+λ+5)=0 ⇒ λ+2=0 ⇒ λ=−2