Solveeit Logo

Question

Question: The matrix \(A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & - 2 \\ - 2 & 2 & - 1 \end{bmatrix}...

The matrix $A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & - 2 \

  • 2 & 2 & - 1 \end{bmatrix}$is
A

Orthogonal

B

Involutary

C

Idempotent

D

NilpotentH

Answer

Orthogonal

Explanation

Solution

Since for given $A = \frac{1}{3}\left| \begin{matrix} 1 & 2 & 2 \ 2 & 1 & - 2 \

  • 2 & 2 & - 1 \end{matrix} \right|$. For orthogonal matrix

AAT=ATA=I(3×3)AA^{T} = A^{T}A = I_{(3 \times 3)}

⇒$AA^{T} = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & - 2 \

  • 2 & 2 & - 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & - 2 \ 2 & 1 & 2 \ 2 & - 2 & - 1 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 9 & 0 & 0 \ 0 & 9 & 0 \ 0 & 0 & 9 \end{bmatrix} = 3I.Similarly. Similarly \alpha = 5$. Hence A is orthogonal