Question
Question: The matrix \(A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & - 2 \\ - 2 & 2 & - 1 \end{bmatrix}...
The matrix $A = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & - 2 \
- 2 & 2 & - 1 \end{bmatrix}$is
A
Orthogonal
B
Involutary
C
Idempotent
D
NilpotentH
Answer
Orthogonal
Explanation
Solution
Since for given $A = \frac{1}{3}\left| \begin{matrix} 1 & 2 & 2 \ 2 & 1 & - 2 \
- 2 & 2 & - 1 \end{matrix} \right|$. For orthogonal matrix
AAT=ATA=I(3×3)
⇒$AA^{T} = \frac{1}{3}\begin{bmatrix} 1 & 2 & 2 \ 2 & 1 & - 2 \
- 2 & 2 & - 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & - 2 \ 2 & 1 & 2 \ 2 & - 2 & - 1 \end{bmatrix} = \frac{1}{3}\begin{bmatrix} 9 & 0 & 0 \ 0 & 9 & 0 \ 0 & 0 & 9 \end{bmatrix} = 3I.Similarly\alpha = 5$. Hence A is orthogonal