Question
Mathematics Question on Binomial theorem
The matrix [5103−2−46−1−2b]is a singular matrix, if b equals
A
-3
B
3
C
0
D
any value
Answer
any value
Explanation
Solution
Explanation:
The matrix 5 −2 −110−4−23−6b is singular, if 5 −2 −110−4−236b=0
⇒ The given matrix is singular for any
⇒ −1(60+12) + 2(30+6) + b(−20+20) = 0
⇒ −72 + 72 + 0b = 0
⇒ 0 = 0
Therefore, there is no specific value.