Solveeit Logo

Question

Physics Question on Resistance

The masses of three copper wires are in the ratio 2:3:52 : 3 : 5 and their lengths are in the ratio 5:3:25 : 3 : 2 .Then, the ratio of their electrical resistances is

A

1 : 9 : 15

B

2 : 3 : 5

C

5 : 3 : 2

D

125 : 30 : 8

Answer

125 : 30 : 8

Explanation

Solution

As we know that, R=ρ1AR = \rho \frac{1}{A}
R1:R2:R3=11A1:12A2:13A3R_{1} : R_{2} : R_{3} = \frac{1_{1} }{A_{1}} : \frac{1_{2}}{A_{2}} : \frac{1_{3}}{A_{3}}
=112V1:122V2:132V3= \frac{1_{1}^{2}}{V_{1}} : \frac{1^{2}_{2}}{V_{2}} : \frac{1^{2}_{3}}{V_{3}}
=112(m1d):122(m2d):132(m3d)= \frac{1^{2}_{1}}{\left(m_{1}d\right)}: \frac{1^{2}_{2}}{\left(m_{2}d\right)} : \frac{1^{2}_{3}}{\left(m_{3}d\right) }
=112m1:122m2:132m3= \frac{1^{2}_{1}}{m_{1}} : \frac{1^{2}_{2}}{m_{2}} : \frac{1^{2}_{3}}{m_{3}}
=522:323:225=125:30:8= \frac{5^{2}}{2} : \frac{3^{2}}{3} : \frac{2^{2}}{5} = 125 : 30 : 8