Solveeit Logo

Question

Question: The masses and radii of the earth and moon are \(M _ { 1 } , R _ { 1 }\) and \(M _ { 2 } , R _ { 2 }...

The masses and radii of the earth and moon are M1,R1M _ { 1 } , R _ { 1 } and M2,R2M _ { 2 } , R _ { 2 } respectively. Their centres are distance d apart. The minimum velocity with which a particle of mass m should be projected from a point midway between their centres so that it escapes to infinity is

A

2Gd(M1+M2)2 \sqrt { \frac { G } { d } \left( M _ { 1 } + M _ { 2 } \right) }

B

22Gd(M1+M2)2 \sqrt { \frac { 2 G } { d } \left( M _ { 1 } + M _ { 2 } \right) }

C

2Gmd(M1+M2)2 \sqrt { \frac { G m } { d } \left( M _ { 1 } + M _ { 2 } \right) }

D

2Gm(M1+M2)d(R1+R2)2 \sqrt { \frac { G m \left( M _ { 1 } + M _ { 2 } \right) } { d \left( R _ { 1 } + R _ { 2 } \right) } }

Answer

2Gd(M1+M2)2 \sqrt { \frac { G } { d } \left( M _ { 1 } + M _ { 2 } \right) }

Explanation

Solution

Gravitational potential at mid point

V=GM1d/2+GM2d/2V = \frac { - G M _ { 1 } } { d / 2 } + \frac { - G M _ { 2 } } { d / 2 }

Now, PE=m×V=2Gmd(M1+M2)P E = m \times V = \frac { - 2 G m } { d } \left( M _ { 1 } + M _ { 2 } \right)

[m = mass of particle]

So, for projecting particle from mid point to infinity

KE=PEK E = | P E |

12mv2=2Gmd(M1+M2)\Rightarrow \frac { 1 } { 2 } m v ^ { 2 } = \frac { 2 G m } { d } \left( M _ { 1 } + M _ { 2 } \right) v=2G(M1+M2)d\Rightarrow v = 2 \sqrt { \frac { G \left( M _ { 1 } + M _ { 2 } \right) } { d } }