Solveeit Logo

Question

Physics Question on Escape Speed

The mass of the moon is 1/144 times the mass of a planet and its diameter 1/16 times the diameter of a planet. If the escape velocity on the planet is v, the escape velocity on the moon will be:

A

v3\frac{v}{3}

B

v4\frac{v}{4}

C

v12\frac{v}{12}

D

v16\frac{v}{16}

Answer

v3\frac{v}{3}

Explanation

Solution

The escape velocity vescapev_{\text{escape}} for a celestial body is given by:

vescape=2GMR,v_{\text{escape}} = \sqrt{\frac{2GM}{R}},

where GG is the gravitational constant, MM is the mass of the body, and RR is its radius.

Given that the escape velocity on the planet is vv:

v=2GMR.v = \sqrt{\frac{2GM}{R}}.

For the moon:

  • Mass Mmoon=M144M_{\text{moon}} = \frac{M}{144}
  • Radius Rmoon=R16R_{\text{moon}} = \frac{R}{16}

Substitute these values into the escape velocity formula for the moon:

vmoon=2GM144R16=2GM16144R=2GM9R=132GMR=v3.v_{\text{moon}} = \sqrt{\frac{2G \cdot \frac{M}{144}}{\frac{R}{16}}} = \sqrt{\frac{2GM \cdot 16}{144R}} = \sqrt{\frac{2GM}{9R}} = \frac{1}{3} \sqrt{\frac{2GM}{R}} = \frac{v}{3}.

Thus, the escape velocity on the moon is:

v3.\frac{v}{3}.