Solveeit Logo

Question

Question: The mass of nitrogen in \({\rm{1000}}\;{\rm{kg}}\) of urea \(\left[ {{\rm{CO}}{{\left( {{\rm{N}}{{\r...

The mass of nitrogen in 1000  kg{\rm{1000}}\;{\rm{kg}} of urea [CO(NH2)2]\left[ {{\rm{CO}}{{\left( {{\rm{N}}{{\rm{H}}_{\rm{2}}}} \right)}_{\rm{2}}}} \right] is:
A. 467  kg{\rm{467}}\;{\rm{kg}}
B. 700.5  kg700.5\;{\rm{kg}}
C. 350.25  kg350.25\;{\rm{kg}}
D. 592.34  kg592.34\;{\rm{kg}}

Explanation

Solution

We know that the mass of any substance is the amount of moles to the molar mass of that species.

Complete step by step answer:
The formula of urea is [CO(NH2)2]\left[ {{\rm{CO}}{{\left( {{\rm{N}}{{\rm{H}}_{\rm{2}}}} \right)}_{\rm{2}}}} \right]. It has one carbon atom, one oxygen atom, two nitrogen atoms and four hydrogen atoms. The chemical name of urea is carbamide. It has a carbonyl group as the functional group.
The given mass of urea is 1000  kg{\rm{1000}}\;{\rm{kg}}.
The molar mass of urea is 60  g/mol{\rm{60}}\;{\rm{g/mol}}.
The molar mass of dinitrogen is 28  g/mol{\rm{28}}\;{\rm{g/mol}}.
The conversion of mass of urea from kilograms to grams is done as follows.
1  kg=1000  g 1000  kg=1000×1000  g =1000000  g\begin{array}{c} {\rm{1}}\;{\rm{kg}} = 1000\;{\rm{g}}\\\ {\rm{1000}}\;{\rm{kg}} = 1000 \times {\rm{1000}}\;{\rm{g}}\\\ = {\rm{1000000}}\;{\rm{g}} \end{array}
We can see that, 60  g{\rm{60}}\;{\rm{g}} of urea consist 28  g28\;{\rm{g}}.
So, 1000000  g{\rm{1000000}}\;{\rm{g}} of urea consisting of the nitrogen atom can be calculated as shown below.
Mass  of  nitrogen=1000000  g60  g×28  g =466666.66  g\begin{array}{c} {\rm{Mass}}\;{\rm{of}}\;{\rm{nitrogen}} = \dfrac{{{\rm{1000000}}\;{\rm{g}}}}{{{\rm{60}}\;{\rm{g}}}} \times 28\;{\rm{g}}\\\ = 466666.66\;{\rm{g}} \end{array}
The conversion of mass of nitrogen from grams to kilograms is done as follows.
1  g=11000  kg 466666.66  g=466666.661000  kg =466.66666  kg 467  kg\begin{array}{c} {\rm{1}}\;{\rm{g}} = \dfrac{1}{{1000}}\;{\rm{kg}}\\\ 466666.66\;{\rm{g}} = \dfrac{{466666.66}}{{1000}}\;{\rm{kg}}\\\ = 466.66666\;{\rm{kg}}\\\ \approx 467\;{\rm{kg}} \end{array}
Thus, the calculated mass of nitrogen is 467  kg{\rm{467}}\;{\rm{kg}}.

Hence, the correct answer for this question is A.

Note:
The mass of any species can be calculated through the molar mass of that species by comparing them. It is one of the easiest methods to evaluate the mass.