Solveeit Logo

Question

Question: The mass of a planet that has a moon whose time period and orbital radius are T and R respectively c...

The mass of a planet that has a moon whose time period and orbital radius are T and R respectively can be written as

A

4π2R3G1T24 \pi ^ { 2 } R ^ { 3 } G ^ { - 1 } T ^ { - 2 }

B

8π2R3G1T28 \pi ^ { 2 } R ^ { 3 } G ^ { - 1 } T ^ { - 2 }

C

12π2R3G1T212 \pi ^ { 2 } R ^ { 3 } G ^ { - 1 } T ^ { - 2 }

D

16π2R3G1T216 \pi ^ { 2 } R ^ { 3 } G ^ { - 1 } T ^ { - 2 }

Answer

8π2R3G1T28 \pi ^ { 2 } R ^ { 3 } G ^ { - 1 } T ^ { - 2 }

Explanation

Solution

mω2R=GMmR2(2πT)2R=GMR2m \omega ^ { 2 } R = \frac { G M m } { R ^ { 2 } } \Rightarrow \left( \frac { 2 \pi } { T } \right) ^ { 2 } R = \frac { G M } { R ^ { 2 } } M=4π2R3GT2\Rightarrow M = \frac { 4 \pi ^ { 2 } R ^ { 3 } } { G T ^ { 2 } }