Solveeit Logo

Question

Physics Question on simple harmonic motion

The mass and the diameter of a planet are three times the respective values for the Earth. The period of oscillation of a simple pendulum on the Earth is 2s2s. The period of oscillation of the same pendulum on the planet would be :

A

23s\frac{2}{\sqrt{3}} s

B

23s2 \sqrt{3} s

C

32s\frac{\sqrt{3}}{2} s

D

32s\frac{3}{2} s

Answer

23s2 \sqrt{3} s

Explanation

Solution

g=GMR2\because g = \frac{GM}{R^{2}} gpge=MeMe(ReRp)2=3(13)2=13\frac{g_{p}}{g_{e}} = \frac{M_{e}}{M_{e}} \left(\frac{R_{e}}{R_{p}}\right)^{2} = 3\left(\frac{1}{3}\right)^{2} = \frac{1}{3} Also T1gT\propto\frac{1}{\sqrt{g}} TpTe=gegp=3\Rightarrow \frac{T_{p}}{T_{e}} = \sqrt{\frac{g_{e}}{g_{p}}} = \sqrt{3} TpTe=23s\Rightarrow \frac{T_{p}}{T_{e}} = 2 \sqrt{3} s