Solveeit Logo

Question

Physics Question on simple harmonic motion

The mass and diameter of a planet are twice those of earth. The period of oscillation of pendulum on this planet will be (if it is a seconds pendulum on earth)

A

12s\frac{1}{\sqrt{2}} s

B

22s2 \sqrt{2} s

C

2s2 s

D

12s\frac{1}{2} s

Answer

22s2 \sqrt{2} s

Explanation

Solution

Gravity, g=GMR2g=\frac{G M}{R^{2}} gearth gplanet =MeMP×RP2Re2\therefore \frac{g_{\text {earth }}}{g_{\text {planet }}}=\frac{M_{e}}{M_{P}} \times \frac{R_{P}^{2}}{R_{e}^{2}} gegp=21\Rightarrow \frac{g_{e}}{g_{p}} =\frac{2}{1} T1g\Rightarrow T \propto \frac{1}{\sqrt{g}} TeTp=gpge\Rightarrow \frac{T_{e}}{T_{p}}=\sqrt{\frac{g_{p}}{g_{e}}} Also, 2Tp=12\frac{2}{T_{p}} =\sqrt{\frac{1}{2}} Tp=22s\Rightarrow T_{p} =2 \sqrt{2} s gearth gplanet =MeMP×RP2Re2\therefore \frac{g_{\text {earth }}}{g_{\text {planet }}}=\frac{M_{e}}{M_{P}} \times \frac{R_{P}^{2}}{R_{e}^{2}} gegp=21\Rightarrow \frac{g_{e}}{g_{p}}=\frac{2}{1} Also, T1gT \propto \frac{1}{\sqrt{g}} TeTp=gpge\Rightarrow \frac{T_{e}}{T_{p}}=\sqrt{\frac{g_{p}}{g_{e}}} 2Tp=12\Rightarrow \frac{2}{T_{p}}=\sqrt{\frac{1}{2}} Tp=22sT_{p}=2 \sqrt{2} s