Solveeit Logo

Question

Question: The mass and diameter of a planet are twice those of earth. The period of oscillation of pendulum on...

The mass and diameter of a planet are twice those of earth. The period of oscillation of pendulum on this planet will be (If it is a second's pendulum on earth)

A

12\frac{1}{\sqrt{2}} sec

B

222\sqrt{2}sec

C

2 sec

D

12\frac{1}{2}sec

Answer

222\sqrt{2}sec

Explanation

Solution

As we know g=GMR2g = \frac{GM}{R^{2}}

\Rightarrow gearthgplanet=MeMp×Rρ2Re2gegp=21\frac{g_{\text{earth}}}{g_{\text{planet}}} = \frac{M_{e}}{M_{p}} \times \frac{R_{\rho}^{2}}{R_{e}^{2}} \Rightarrow \frac{g_{e}}{g_{p}} = \frac{2}{1}

AlsoT1gTeTp=gpge2Tp=12T \propto \frac{1}{\sqrt{g}} \Rightarrow \frac{T_{e}}{T_{p}} = \sqrt{\frac{g_{p}}{g_{e}}} \Rightarrow \frac{2}{T_{p}} = \sqrt{\frac{1}{2}}

\Rightarrow Tp=22secT_{p} = 2\sqrt{2}\sec.