Solveeit Logo

Question

Physics Question on simple harmonic motion

The mass and diameter of a planet are twice those of earth. The period of oscillation of pendulum on this planet will be (if it is a secor,d's pendulum on earth)

A

12s1\sqrt{2}s

B

22s2\sqrt{2}s

C

2 s

D

1/2s

Answer

22s2\sqrt{2}s

Explanation

Solution

Gravity, g=\frac{GM}{R^2}\hspace15mm (G is constant) gearthgplanet=MeMp×Rp2Re2gegp=21\therefore\, \, \, \, \, \frac{g_{earth}}{g_{planet}}=\frac{M_e}{M_p}\times\frac{R^2_p}{R^2_e}\Rightarrow\frac{g_e}{g_p}=\frac{2}{1} Also, T??frac1gTeTp=gpge\, \, \, \, \, \, \, \, \, \, T ??frac{1}{\sqrt{g}}\Rightarrow\frac{T_e}{T_p}=\sqrt{\frac{g_p}{g_e}} 2Tp=12\Rightarrow \, \, \, \, \, \, \, \, \, \, \, \, \, \frac{2}{T_p}=\sqrt{\frac{1}{2}} Tp=22s\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, T_p=2\sqrt{2}s