Solveeit Logo

Question

Physics Question on Units and measurement

The main scale of a vernier callipers has n divisions/cm. n divisions of the vernier scale coincide with (n - 1) divisions of main scale. The least count of the vernier callipers is,

A

1(n+1)(n1)cm\frac{1}{\left(n +1\right)\left(n -1\right)}cm

B

1ncm\frac{1}{n}cm

C

1n2cm\frac{1}{n^{2}}cm

D

1n(n+1)cm\frac{1}{n\left(n + 1\right)}cm

Answer

1n2cm\frac{1}{n^{2}}cm

Explanation

Solution

n(VSD)=(n1)MSDn(VSD) = (n - 1)MSD 1VSD=(n1)nMSD\Rightarrow 1\,VSD = \frac{(n - 1)}{n} MSD Least count =1MSD1VSD=[1(n1)n]= 1 \,MSD - 1 \,VSD = [ 1 - \frac{(n -1)}{n}] MSD=1nMSDMSD = \frac{1}{n} MSD =1n(1n)cm= \frac{1}{n} (\frac{1}{n}) cm =1n2cm = \frac{1}{n^2} cm