Solveeit Logo

Question

Physics Question on Motion in a plane

The magnitude of vectors A \overrightarrow{A}, B\overrightarrow{B} and C\overrightarrow{C} are 3, 4 and 5 units respectively. If A+B=C \overrightarrow{A} + \overrightarrow{B} = \overrightarrow{C}, the angle between A\overrightarrow{A} and B\overrightarrow{B} is

A

π/2\pi / 2

B

cos1(0.6) \cos^{ - 1} (0 . 6)

C

tan1(7/5) \tan^{ - 1} \, (7/5)

D

π/4\pi / 4

Answer

π/2\pi / 2

Explanation

Solution

Let θ\theta angle between A\overrightarrow{A} and B\overrightarrow{B}
Given : A=A=3units A = | \overrightarrow{A} | = 3 \, units
B+B=4unitsB+ | \overrightarrow{B} | = 4\, units
C=C=5unitsC = | \overrightarrow{C} | = 5 \,units
A+B+C\overrightarrow{A} + \overrightarrow{B} + \overrightarrow{C}
(A+B)(A+B)=CC\therefore ( \overrightarrow{A} + \overrightarrow{B} ) \cdot ( \overrightarrow{A} + \overrightarrow{B} ) = \overrightarrow{C} \cdot \overrightarrow{C}
AA+AB+BA+BB=CC\overrightarrow{A} \cdot \overrightarrow{A} + \overrightarrow{A} \cdot \overrightarrow{B} + \overrightarrow{B} \cdot \overrightarrow{A} + \overrightarrow{B} \cdot \overrightarrow{B} = \overrightarrow{C} \cdot \overrightarrow{C}
A2+2ABcosθ+B2=C2A^2 + 2 A B \cos \theta + B^2 = C^2
9+2ABcosθ+16=259 + 2AB \cos \theta + 16 = 25 or 2ABcosθ=02 A B \cos \theta = 0
or cosθ=0θ=90 \cos \theta = 0 \therefore \theta = 90^\circ.