Solveeit Logo

Question

Physics Question on Vector basics

The magnitude of the sum of the two vectors is equal to the difference of their magnitudes, the angle between the vectors is,

A

0^\circ

B

45^\circ

C

90^\circ

D

180^\circ

Answer

90^\circ

Explanation

Solution

Let the two vectors be A\vec{A} and B\vec{B} with magnitudes AA and BB respectively. Then magnitude of their sum is given by:
A+B=A2+B2+2ABcosθ(1)(θ=|\overrightarrow{ A }+\overrightarrow{ B }|=\sqrt{ A ^{2}+ B ^{2}+2 AB \cos \theta} \rightarrow(1)(\theta= angle between the vectors ))
Magnitude of their difference is given by:
AB=A2+B22ABcosθ(2)|\overrightarrow{ A }-\overrightarrow{ B }|=\sqrt{ A ^{2}+ B ^{2}-2 AB \cos \theta} \rightarrow(2)
As A+B=AB|\overrightarrow{ A }+\overrightarrow{ B }|=|\overrightarrow{ A }-\overrightarrow{ B }|
A2+B2+2ABcosθ=A2+B22ABcosθ\Rightarrow A ^{2}+ B ^{2}+2 AB \cos \theta= A ^{2}+ B ^{2}-2 AB \cos \theta
4ABcosθ=0\Rightarrow 4 AB \cos \theta=0 or cosθ=0\cos \theta=0
θ=90.\Rightarrow \theta=90^{\circ} .