Solveeit Logo

Question

Question: The magnitude of component of vector A = $3\hat{i}+4\hat{j}$ along vector $2\hat{i}+\hat{j}$ is $\al...

The magnitude of component of vector A = 3i^+4j^3\hat{i}+4\hat{j} along vector 2i^+j^2\hat{i}+\hat{j} is α\alpha. Then find the value of α24\frac{\alpha^2}{4}.

Answer

5

Explanation

Solution

Let A=3i^+4j^\mathbf{A} = 3\hat{i} + 4\hat{j} and B=2i^+j^\mathbf{B} = 2\hat{i} + \hat{j}.
The magnitude of the component of vector A\mathbf{A} along vector B\mathbf{B} is given by the formula:
α=ABB\alpha = \frac{|\mathbf{A} \cdot \mathbf{B}|}{|\mathbf{B}|}.

First, calculate the dot product of A\mathbf{A} and B\mathbf{B}:
AB=(3i^+4j^)(2i^+j^)=(3)(2)+(4)(1)=6+4=10\mathbf{A} \cdot \mathbf{B} = (3\hat{i} + 4\hat{j}) \cdot (2\hat{i} + \hat{j}) = (3)(2) + (4)(1) = 6 + 4 = 10.

Next, calculate the magnitude of vector B\mathbf{B}:
B=2i^+j^=22+12=4+1=5|\mathbf{B}| = |2\hat{i} + \hat{j}| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}.

Now, calculate the magnitude of the component of A\mathbf{A} along B\mathbf{B}, which is α\alpha:
α=ABB=105=105\alpha = \frac{|\mathbf{A} \cdot \mathbf{B}|}{|\mathbf{B}|} = \frac{|10|}{\sqrt{5}} = \frac{10}{\sqrt{5}}.

We are asked to find the value of α24\frac{\alpha^2}{4}.
First, calculate α2\alpha^2:
α2=(105)2=102(5)2=1005=20\alpha^2 = \left(\frac{10}{\sqrt{5}}\right)^2 = \frac{10^2}{(\sqrt{5})^2} = \frac{100}{5} = 20.

Now, calculate α24\frac{\alpha^2}{4}:
α24=204=5\frac{\alpha^2}{4} = \frac{20}{4} = 5.