Solveeit Logo

Question

Question: The magnitude of component of vector A = $3\hat{i} + 4\hat{j}$ along vector $2\hat{i} + \hat{j}$ is ...

The magnitude of component of vector A = 3i^+4j^3\hat{i} + 4\hat{j} along vector 2i^+j^2\hat{i} + \hat{j} is α\alpha. Then find the value of α24\frac{\alpha^2}{4}.

Answer

5

Explanation

Solution

Let A=3i^+4j^\vec{A} = 3\hat{i} + 4\hat{j} and B=2i^+j^\vec{B} = 2\hat{i} + \hat{j}.

The magnitude of the component of vector A\vec{A} along vector B\vec{B} is given by the scalar projection of A\vec{A} onto B\vec{B}, which is α=ABB\alpha = \frac{\vec{A} \cdot \vec{B}}{|\vec{B}|}.

First, calculate the dot product AB\vec{A} \cdot \vec{B}: AB=(3)(2)+(4)(1)=6+4=10\vec{A} \cdot \vec{B} = (3)(2) + (4)(1) = 6 + 4 = 10.

Next, calculate the magnitude of vector B\vec{B}: B=22+12=4+1=5|\vec{B}| = \sqrt{2^2 + 1^2} = \sqrt{4 + 1} = \sqrt{5}.

Now, calculate the value of α\alpha: α=105\alpha = \frac{10}{\sqrt{5}}.

We are asked to find the value of α24\frac{\alpha^2}{4}. Calculate α2\alpha^2: α2=(105)2=102(5)2=1005=20\alpha^2 = \left(\frac{10}{\sqrt{5}}\right)^2 = \frac{10^2}{(\sqrt{5})^2} = \frac{100}{5} = 20.

Finally, calculate α24\frac{\alpha^2}{4}: α24=204=5\frac{\alpha^2}{4} = \frac{20}{4} = 5.

The value of α24\frac{\alpha^2}{4} is 5.