Solveeit Logo

Question

Question: The magnetic induction inside a long cylinder of radius R vary as $B = ar^2$, where a is constant of...

The magnetic induction inside a long cylinder of radius R vary as B=ar2B = ar^2, where a is constant of proper unit. The current density in wire as function of distance (r) from centre of cylinder is expressed as xaμ0rn\frac{xa}{\mu_0}r^n. Find (x + n).

Answer

4

Explanation

Solution

To find the current density J(r)J(r) inside the cylinder, we use Ampere's Law:

Bdl=μ0Ienc\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enc}

  1. Amperian Loop: Choose a circular Amperian loop of radius rr inside the cylinder.

  2. Calculate Bdl\oint \vec{B} \cdot d\vec{l}: Bdl=B(r)(2πr)=(ar2)(2πr)=2πar3\oint \vec{B} \cdot d\vec{l} = B(r) \cdot (2\pi r) = (ar^2) (2\pi r) = 2\pi a r^3

  3. Relate IencI_{enc} to J(r)J(r'): Ienc=0rJ(r)dA=0rJ(r)(2πr)drI_{enc} = \int_0^r J(r') dA' = \int_0^r J(r') (2\pi r') dr'

  4. Apply Ampere's Law: 2πar3=μ00rJ(r)(2πr)dr2\pi a r^3 = \mu_0 \int_0^r J(r') (2\pi r') dr' ar3=μ00rJ(r)rdra r^3 = \mu_0 \int_0^r J(r') r' dr'

  5. Differentiate to find J(r)J(r): ddr(ar3)=ddr(μ00rJ(r)rdr)\frac{d}{dr} (a r^3) = \frac{d}{dr} \left( \mu_0 \int_0^r J(r') r' dr' \right) 3ar2=μ0J(r)r3a r^2 = \mu_0 J(r) r

  6. Solve for J(r)J(r): J(r)=3ar2μ0r=3aμ0rJ(r) = \frac{3a r^2}{\mu_0 r} = \frac{3a}{\mu_0} r

  7. Compare with the given form: J=xaμ0rnJ = \frac{xa}{\mu_0}r^n. Comparing with J(r)=3aμ0rJ(r) = \frac{3a}{\mu_0} r, we get x=3x=3 and n=1n=1.

  8. Calculate (x + n): x+n=3+1=4x+n = 3+1 = 4