Solveeit Logo

Question

Question: The magnetic induction at the centre O in the figure shown is <img src="https://cdn.pureessence.tec...

The magnetic induction at the centre O in the figure shown is

A

μ0i4(1R11R2)\frac { \mu _ { 0 } i } { 4 } \left( \frac { 1 } { R _ { 1 } } - \frac { 1 } { R _ { 2 } } \right)

B

μ0i4(1R1+1R2)\frac { \mu _ { 0 } i } { 4 } \left( \frac { 1 } { R _ { 1 } } + \frac { 1 } { R _ { 2 } } \right)

C

μ0i4(R1R2)\frac { \mu _ { 0 } i } { 4 } \left( R _ { 1 } - R _ { 2 } \right)

D

μ0i4(R1+R2)\frac { \mu _ { 0 } i } { 4 } \left( R _ { 1 } + R _ { 2 } \right)

Answer

μ0i4(1R11R2)\frac { \mu _ { 0 } i } { 4 } \left( \frac { 1 } { R _ { 1 } } - \frac { 1 } { R _ { 2 } } \right)

Explanation

Solution

In the following figure, magnetic fields at O due to sections 1, 2, 3 and 4 are considered as B1,B2,B3B _ { 1 } , B _ { 2 } , B _ { 3 } and B4B _ { 4 } respectively.

B1=B3=0B _ { 1 } = B _ { 3 } = 0

B2=μ04ππiR1B _ { 2 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { \pi i } { R _ { 1 } } \otimes

B4=μ04ππiR2B _ { 4 } = \frac { \mu _ { 0 } } { 4 \pi } \cdot \frac { \pi i } { R _ { 2 } }◉ As B2>B4\left| B _ { 2 } \right| > \left| B _ { 4 } \right|

So