Solveeit Logo

Question

Physics Question on Electromagnetic waves

The magnetic field of an electromagnetic wave is given by : B=1.6×106cos(2×107z+6×1015t)(2i^+j^)Wbm2\vec{B} =1.6 \times10^{-6} \cos\left(2\times10^{7} z +6 \times10^{15}t\right)\left(2\hat{i} +\hat{j}\right) \frac{Wb}{m^{2}} The associated electric field will be :-

A

E=4.8×102cos(2×107z+6×1015t)(i^2j^)Vm\vec{E} =4.8 \times10^{2} \cos\left(2\times10^{7}z + 6\times10^{15}t\right)\left(\hat{i} -2\hat{j}\right) \frac{V}{m}

B

E=4.8×102cos(2×107z6×1015t)(2i^+j^)Vm\vec{E} =4.8 \times10^{2} \cos\left(2\times10^{7}z - 6\times10^{15}t\right)\left(2\hat{i} + \hat{j}\right) \frac{V}{m}

C

E=4.8×102cos(2×107z6×1015t)(2i^+j^)Vm\vec{E} =4.8 \times10^{2} \cos\left(2\times10^{7}z - 6\times10^{15}t\right)\left( - 2\hat{i} + \hat{j}\right) \frac{V}{m}

D

E=4.8×102cos(2×107z+6×1015t)(1i^+2j^)Vm\vec{E} =4.8 \times10^{2} \cos\left(2\times10^{7}z + 6\times10^{15}t\right)\left( -1 \hat{i} + 2\hat{j}\right) \frac{V}{m}

Answer

E=4.8×102cos(2×107z+6×1015t)(i^2j^)Vm\vec{E} =4.8 \times10^{2} \cos\left(2\times10^{7}z + 6\times10^{15}t\right)\left(\hat{i} -2\hat{j}\right) \frac{V}{m}

Explanation

Solution

If we use that direction of light propagation will be along E×B\vec{E} \times \vec{B}? Then (4) option is correct.
Detailed solution is as following.
magnitude of E = CB
E=3×108×1.6×106×5E = 3 \times 10^8 \times 1.6 \times 10^{-6} \times \sqrt{5}
E=4.8×102  5E = 4.8 \times 10^2 \; \sqrt{5}
E\vec{E} and B\vec{B} are perpendicular to each other
  E.B=0\Rightarrow \; \vec{E} . \vec{B} = 0
\Rightarrow either direction of E\vec{E} is i^2j^\hat{i} - 2\hat{j} or i^+2j^ -\hat{i} + 2 \hat{j} from given option
Also wave propagation direction is parallel to
E×B\vec{E} \times \vec{B} which is k^ - \hat{k}
  E\Rightarrow \; \vec{E} is along (i^+2j^)( - \hat{i} + 2 \hat{j})