Solveeit Logo

Question

Question: The magnetic field of a plane electromagnetic is given by [200π (y + ct)] . Where c = 3 × 108 m/s....

The magnetic field of a plane electromagnetic is given by [200π (y + ct)] . Where c = 3 × 108 m/s. The corresponding electric field is :-

Answer

E=6\times10^{10}\pi\cos(y+ct),\hat{x}

Explanation

Solution

Solution:

We assume that the magnetic field is given by

B=200πcos(y+ct)z^\vec{B}=200\pi\cos(y+ct)\,\hat{z}

with c=3×108m/sc=3\times10^8\,{\rm m/s}. (Note: The form “y+cty+ct” shows that the phase is constant when y+ct=y+ct= constant; such a wave propagates in the y^-\hat{y} direction.)

For an electromagnetic wave in free space the fields satisfy:

B=1cn^×EE=cn^×B.\vec{B}=\frac{1}{c}\,\hat{n}\times\vec{E}\quad\Longrightarrow\quad \vec{E}=-c\,\hat{n}\times\vec{B}\,.

Since the phase is y+cty+ct, the propagation direction unit vector is:

n^=y^.\hat{n}=-\hat{y}\,.

Now, calculate the cross product:

n^×B=(y^)×[200πcos(y+ct)z^]=200πcos(y+ct)(y^×z^).\hat{n}\times \vec{B} = (-\hat{y})\times\bigl[200\pi\cos(y+ct)\,\hat{z}\bigr] = -200\pi\cos(y+ct)\, (\hat{y}\times\hat{z})\,.

But, y^×z^=x^\hat{y}\times\hat{z}=\hat{x}, so

n^×B=200πcos(y+ct)x^.\hat{n}\times \vec{B} = -200\pi\cos(y+ct)\,\hat{x}\,.

Then,

E=c[200πcos(y+ct)x^]=200πccos(y+ct)x^.\vec{E}=-c\,\Bigl[-200\pi\cos(y+ct)\,\hat{x}\Bigr]=200\pi\,c\,\cos(y+ct)\,\hat{x}\,.

Substitute c=3×108m/sc=3\times10^8\,{\rm m/s}:

E=200π(3×108)cos(y+ct)x^=6×1010πcos(y+ct)x^.\vec{E}=200\pi\,(3\times10^8)\cos(y+ct)\,\hat{x} = 6\times10^{10}\pi\cos(y+ct)\,\hat{x}\,.

Explanation (Minimal):

  1. Assume B=200πcos(y+ct)z^\vec{B}=200\pi\cos(y+ct)\,\hat{z} so the wave travels in the y-y direction (n^=y^\hat{n}=-\hat{y}).
  2. Use E=cn^×B\vec{E}=-c\,\hat{n}\times\vec{B}.
  3. Compute (y^)×(z^)=x^(-\hat{y})\times(\hat{z})=-\hat{x} so that E=200πccos(y+ct)x^\vec{E}=200\pi\,c\,\cos(y+ct)\,\hat{x}.
  4. Substitute c=3×108c=3\times10^8 to get the final answer.