Solveeit Logo

Question

Physics Question on Faradays laws of induction

The magnetic field of a cylindrical magnet that has a pole-face radius 2.8cm2.8 \,cm can be varied sinusoidally between minimum value 16.8T16.8 \,T and maximum value 17.2T17.2 \,T at a frequency of 60πHz\frac{60}{\pi}\,Hz Cross section of the magnetic field created by the magnet is shown. At a radial distance of 2cm2\, cm from the axis, find the amplitude of the electric field (in mNC1)mN \,C^{-1}) induced by the magnetic field variation.

A

240mNC1240\,mN\,C^{-1}

B

180mNC1180\,mN\,C^{-1}

C

110mNC1110\,mN\,C^{-1}

D

290mNC1290\,mN\,C^{-1}

Answer

240mNC1240\,mN\,C^{-1}

Explanation

Solution

Edl=AdBdt\int \vec{E} \cdot\vec{dl}=-A \frac{dB}{dt} As B=17+(0.2)sin(ωt+ϕ)B=17+\left(0.2\right)sin \left(\omega t+\phi\right) E(2πr)=πr2(0.2)ωcos(ωt+ϕ)E\left(2\pi r\right)=-\pi r^{2}\left(0.2\right)\omega\,cos\left(\omega t+\phi\right) E=r2(0.2)ωcos(ωt+ϕ)E=-\frac{r}{2}\left(0.2\right)\omega\,cos\left(\omega t+\phi\right) Magnitude of the amplitude =r2(0.2)ω=240mNC1=\frac{r}{2}\left(0.2\right)\omega=240\,mN\,C^{-1}