Solveeit Logo

Question

Question: The magnetic field in the plane electromagnetic wave is given by $1.5 \times 10^{-8} \sin(0.5 \times...

The magnetic field in the plane electromagnetic wave is given by 1.5×108sin(0.5×103x+1011t)1.5 \times 10^{-8} \sin(0.5 \times 10^3 x + 10^{11} t) Tesla. Which of the following options is correct?

A

(i - Q); (ii - R); (iii - P)

B

(i - Q); (ii - P); (iii - R)

C

(i - Q); (ii - R); (iii - S)

D

(i - S); (ii - R); (iii - P)

Answer

(i - Q); (ii - R); (iii - P)

Explanation

Solution

The magnetic field equation is given by B=1.5×108sin(0.5×103x+1011t)B = 1.5 \times 10^{-8} \sin(0.5 \times 10^3 x + 10^{11} t) Tesla. Comparing with the standard form B=B0sin(kx+ωt)B = B_0 \sin(kx + \omega t):

  • Amplitude of magnetic field, B0=1.5×108B_0 = 1.5 \times 10^{-8} T.
  • Wave number, k=0.5×103 rad/m=500 rad/mk = 0.5 \times 10^3 \text{ rad/m} = 500 \text{ rad/m}.
  • Angular frequency, ω=1011 rad/s\omega = 10^{11} \text{ rad/s}.

ii. Speed of wave (in terms of 10810^8 m/s): The speed of an electromagnetic wave is v=ωkv = \frac{\omega}{k}. v=1011 rad/s500 rad/m=10115×102 m/s=0.2×109 m/s=2×108 m/sv = \frac{10^{11} \text{ rad/s}}{500 \text{ rad/m}} = \frac{10^{11}}{5 \times 10^2} \text{ m/s} = 0.2 \times 10^9 \text{ m/s} = 2 \times 10^8 \text{ m/s}. This matches option R (2).

iii. Amplitude of electric field (in V/m): The amplitude of the electric field (E0E_0) is related to the amplitude of the magnetic field (B0B_0) by E0=vB0E_0 = v B_0. E0=(2×108 m/s)×(1.5×108 T)=3 V/mE_0 = (2 \times 10^8 \text{ m/s}) \times (1.5 \times 10^{-8} \text{ T}) = 3 \text{ V/m}. This matches option P (3).

i. Wavelength (in km): The wavelength (λ\lambda) is related to the wave number (kk) by k=2πλk = \frac{2\pi}{\lambda}. λ=2πk=2π500 rad/m=π250 m\lambda = \frac{2\pi}{k} = \frac{2\pi}{500 \text{ rad/m}} = \frac{\pi}{250} \text{ m}. Converting to kilometers: λ=π250 m=π250×1000 km=π250000 km\lambda = \frac{\pi}{250} \text{ m} = \frac{\pi}{250 \times 1000} \text{ km} = \frac{\pi}{250000} \text{ km}. Using π3.14159\pi \approx 3.14159, λ0.000012566 km=1.2566×105 km\lambda \approx 0.000012566 \text{ km} = 1.2566 \times 10^{-5} \text{ km}. This calculated wavelength does not directly match any of the options in Column II (3, 12.5, 2, 4.5 km). However, if we assume there might be a typo in the question and kk was intended to be 0.5×1030.5 \times 10^{-3} for the wavelength calculation, then: λ=2π0.5×103=2π5×104=0.4π×104 m=4000π m12566 m=12.566 km\lambda = \frac{2\pi}{0.5 \times 10^{-3}} = \frac{2\pi}{5 \times 10^{-4}} = 0.4\pi \times 10^4 \text{ m} = 4000\pi \text{ m} \approx 12566 \text{ m} = 12.566 \text{ km}. This value closely matches option Q (12.5 km).

Given that (ii - R) and (iii - P) are definitively calculated, and assuming one of the options must be correct, the option that includes (i - Q) is the most plausible choice, suggesting a potential typo in the original question's wave number for the wavelength calculation.

Therefore, the correct option is (i - Q); (ii - R); (iii - P).