Solveeit Logo

Question

Physics Question on Moving charges and magnetism

The magnetic field at the point of intersection of diagonals of a square loop of side LL carrying a current II is

A

μ0IπL\frac{\mu _{0} I}{\pi L}

B

2μ0IπL\frac{2 \mu _{0} I}{\pi L}

C

2μ0IπL\frac{\sqrt{2} \mu _{0} I}{\pi L}

D

22μ0IπL\frac{2 \sqrt{2} \mu _{0} I}{\pi L}

Answer

22μ0IπL\frac{2 \sqrt{2} \mu _{0} I}{\pi L}

Explanation

Solution

From Biot-Savart's law, magnetic field due to current carrying conductor is B=(μ)04πir(sin(ϕ)1+sin?(ϕ)2)B= \, \frac{\left(\mu \right)_{0}}{4 \pi }\frac{i}{r} \, \left(sin \left(\phi\right)_{1} + sin ? \left(\phi\right)_{2}\right) Where, ϕ1=45,ϕ2=45\phi_{1}=45^\circ ,\phi_{2}=45^\circ B=(μ)04π.iL/2(12+12)=(μ)0i22πLB=\frac{\left(\mu \right)_{0}}{4 \pi } \, .\frac{i}{L/2}\left(\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}\right)=\frac{\left(\mu \right)_{0} i \sqrt{2}}{2 \pi L} Since there are four sides, the total magnetic field is Bnet=4B=22μ0iπLB_{net}=4B=\frac{2 \sqrt{2} \mu _{0} i}{\pi L}