Solveeit Logo

Question

Physics Question on Magnetic Field

The magnetic field at the point of intersection of diagonals of a square wire loop of side LL carrying a current II is

A

μoIπL\frac{\mu_{o}I}{\pi L}

B

2μoIπL\frac{2\mu_{o}I}{\pi L}

C

2μoIπL\frac{\sqrt{2}\mu_{o}I}{\pi L}

D

22μoIπL\frac{2\sqrt{2}\mu_{o}I}{\pi L}

Answer

22μoIπL\frac{2\sqrt{2}\mu_{o}I}{\pi L}

Explanation

Solution

We can have the figure as follows

The net magnetic field at the point of intersection of the diagonal would be given by
Bnet =(BL/2sin45+BL/2sin45)B_{\text {net }}=\left(B_{L / 2} \sin 45^{\circ}+B_{L / 2} \sin 45^{\circ}\right)
+(BL/2sin45+BL/2sin45)+\left(B_{L / 2} \sin 45^{\circ}+B_{L / 2} \sin 45^{\circ}\right)
+(BL/2sin45+BL/2sin45)+\left(B_{L / 2} \sin 45^{\circ}+B_{L / 2} \sin 45^{\circ}\right)
+(BL/2sin45+BL/2sin45)+\left(B_{L / 2} \sin 45^{\circ}+B_{L / 2} \sin 45^{\circ}\right)
=4(BL/2sin45+BL/2sin45)=4\left(B_{L / 2} \sin 45^{\circ}+B_{L / 2} \sin 45^{\circ}\right)
=8BL/2sin45=8μ04πI(L2)12=8 B_{L / 2} \sin 45^{\circ}=8 \frac{\mu_{0}}{4 \pi} \frac{I}{\left(\frac{L}{2}\right)} \frac{1}{\sqrt{2}}
=μ0π22IL=\frac{\mu_{0}}{\pi} \frac{2 \sqrt{2} I}{L}
Aliter
Bnet=4×μ04πIL2(sin45+sin45)B_{ net }=4 \times \frac{\mu_{0}}{4 \pi} \cdot \frac{I}{\frac{L}{2}}\left(\sin 45^{\circ}+\sin 45^{\circ}\right)
=4×μ04π×2ia×22=4 \times \frac{\mu_{0}}{4 \pi} \times \frac{2 i}{a} \times \frac{2}{\sqrt{2}}
=22μ0IπL=\frac{2 \sqrt{2} \mu_{0} I}{\pi L}