Solveeit Logo

Question

Physics Question on Magnetic Field

The magnetic field at the centre of a circular current carrying conductor of radius rr is BcB_c. The magnetic field on its axis at a distance rr from the centre is BaB_a. The value of Bc:BaB_c : B_a will be

A

1:2 1 : \sqrt {2}

B

1:22 1 : 2\sqrt {2}

C

22:1 2\sqrt {2}:1

D

2:1 \sqrt {2}:1

Answer

22:1 2\sqrt {2}:1

Explanation

Solution

Magnetic field at the center of the circular current carrying loop Bc=μoI2rB _{ c }=\frac{\mu_{ o } I }{2 r } Magnetic field at a distance rr on the axis
Ba=μ0Ir22(x2+r2)3/2B_{a}=\frac{\mu_{0} I r^{2}}{2\left(x^{2}+r^{2}\right)^{3 / 2}} \quad where x=rx=r
Ba=μ0Ir22(r2+r2)3/2\therefore B_{a}=\frac{\mu_{0} I r^{2}}{2\left(r^{2}+r^{2}\right)^{3 / 2}}
Or Ba=μoI2r122B _{ a }=\frac{\mu_{ o } I }{2 r } \cdot \frac{1}{2 \sqrt{2}}
Bc:Ba=22:1\Longrightarrow B _{ c }: B _{ a }=2 \sqrt{2}: 1