Solveeit Logo

Question

Question: The magnetic field at the center of the circular loop as shown in the figure, when the single wire i...

The magnetic field at the center of the circular loop as shown in the figure, when the single wire is bent to form a circular loop and also extends to form a straight section is:
A. μ0I2R\dfrac{{{\mu _0}I}}{{2R}} \odot
B. μ0I2R(1+1π2)\dfrac{{{\mu _0}I}}{{2R}}\left( {1 + \dfrac{1}{{\pi \sqrt 2 }}} \right) \odot
C. μ0I2R(11π2)\dfrac{{{\mu _0}I}}{{2R}}\left( {1 - \dfrac{1}{{\pi \sqrt 2 }}} \right) \otimes
D. μ0IR(11π2)\dfrac{{{\mu _0}I}}{R}\left( {1 - \dfrac{1}{{\pi \sqrt 2 }}} \right) \otimes

Explanation

Solution

In the above question, we have to find the total magnetic field. Then firstly, finding the magnetic field along the straight wire and then extending the circular loop and then again, the magnetic field of the straight wire. After adding all the magnetic fields, we got the final answer.

Complete step by step answer:
The total magnetic field will be given by adding the magnetic field of straight line and the magnetic field of the circular loop and again the magnetic field of straight line.Magnetic field can be calculated by the Biot savart’s law whose expression be given by,
dB=μ04πIdr×rr3dB = \dfrac{{{\mu _0}}}{{4\pi }}\dfrac{{Idr \times r}}{{{r^3}}}
Magnetic field of straight wire be given by the formula,
B=μ0I4πr(sinθ1+sinθ2)B = \dfrac{{{\mu _0}I}}{{4\pi r}}\left( {sin{\theta _1} + \sin {\theta _2}} \right)
where θ1,θ2{\theta _{1,}}{\theta _2} are the angles corresponding to the two ends of the wire.
Now, the magnetic field along AB,
B1=μ0I4πR(sinπ2sinπ4) B1=μ0I4πR(112)  {B_1} = \dfrac{{{\mu _0}I}}{{4\pi R}}\left( {sin\dfrac{\pi }{2} - \sin \dfrac{\pi }{4}} \right) \otimes \\\ \Rightarrow{B_1} = \dfrac{{{\mu _0}I}}{{4\pi R}}\left( {1 - \dfrac{1}{{\sqrt 2 }}} \right) \otimes \\\ (1) \ldots \ldots \left( 1 \right)
Now, the magnetic field along the circular loop
B2=μ0I2R{B_2} = \dfrac{{{\mu _0}I}}{{2R}} \odot (2) \ldots \ldots \left( 2 \right)
Magnetic field along the wire BC,
B3=μ0I4πR(sinπ2+sinπ4) B3=μ0I4πR(1+12)  {B_3} = \dfrac{{\mu {}_0I}}{{4\pi R}}\left( {\sin \dfrac{\pi }{2} + \sin \dfrac{\pi }{4}} \right) \odot \\\ \Rightarrow{B_3} = \dfrac{{{\mu _0}I}}{{4\pi R}}\left( {1 + \dfrac{1}{{\sqrt 2 }}} \right) \odot \\\ (3) \ldots \ldots \left( 3 \right)
Now adding all the above marked equations:
B=B1+B2+B3\overrightarrow B = {B_1} + {B_2} + {B_3}
\Rightarrow\overrightarrow B = \left( {\dfrac{{{\mu _0}I}}{{2R}} + \dfrac{{2{\mu _0}I}}{{4\pi R}}\dfrac{1}{{\sqrt 2 }}} \right) \odot \\\ \therefore\overrightarrow B = \dfrac{{{\mu _0}I}}{{2R}}\left( {1 + \dfrac{1}{{\pi \sqrt 2 }}} \right) \odot \\\
Hence, the correct option is B.

Note: The value of proportionality is μ04π=107NA2\dfrac{{{\mu _0}}}{{4\pi }} = {10^{ - 7}}N{A^{ - 2}}.Biot savart law is a vector quantity which contains both magnitude and direction.\otimes is the inward direction of the field and \odot is the outward direction of the field.