Solveeit Logo

Question

Physics Question on Magnetic Field

The magnetic field at the center of a current carrying loop of radius 0.1m0.1\, m is 555 \sqrt{5} times that at a point along its axis. The distance of this point from the centre of the loop is

A

0.2 m

B

0.1 m

C

0.05 m

D

0.25 m

Answer

0.2 m

Explanation

Solution

We know that,
Bcentre Baxis =(1+x2t2)3/2\frac{ B _{\text {centre }}}{ B _{\text {axis }}}=\left(1+\frac{x^{2}}{t^{2}}\right)^{3 / 2}
Given that, Bcentre =55Baxis B _{\text {centre }}=5 \sqrt{5} B _{\text {axis }}
Bcentre Baxis =55\frac{ B _{\text {centre }}}{ B _{\text {axis }}}=5 \sqrt{5}
55=[1+x2(0.1)2]3/2\therefore 5 \sqrt{5}=\left[1+\frac{x^{2}}{(0.1)^{2}}\right]^{3 / 2}
On squaring both sides, we get
25×5=[1+x2(0.1)2]325 \times 5 =\left[1+\frac{x^{2}}{(0.1)^{2}}\right]^{3}
1253=1+x2(0.1)2\sqrt[3]{125} =1+\frac{x^{2}}{(0.1)^{2}}
0.01+x2=0.05\Rightarrow 0.01+ x^{2}=0.05
x2=0.050.01\Rightarrow x^{2} =0.05-0.01
x2=0.04\Rightarrow x^{2} =0.04
x=0.2m\Rightarrow \, x =0.2\, m