Question
Question: The locus of z which satisfies the inequality log<sub>0.3</sub>\|z – 1\| \> log<sub>0.3</sub> \|z – ...
The locus of z which satisfies the inequality log0.3|z – 1| > log0.3 |z – i| is given by-
A
x + y < 0
B
x + y > 0
C
x – y > 0
D
x – y < 0
Answer
x – y > 0
Explanation
Solution
Sol. log0.3 |z – 1| > log0.3 |z – i| Ž |z – 1| < |z – i|
[\ base < 1]
Ž |z – 1|2 < |z – i|2 Ž (z – 1)(zˉ–1) < (z – i) (zˉ+i)
Ž zzˉ– z – zˉ+1 < zzˉ + iz – izˉ + 1 Ž (1 + i)z
+ (1 – i) zˉ> 0
Ž (z + zˉ) + i (z – zˉ) > 0 Ž (2z+zˉ)
– (2iz–zˉ) > 0 Ž x – y > 0.