Solveeit Logo

Question

Question: The locus of z which satisfies the inequality log<sub>0.3</sub>\|z – 1\| \> log<sub>0.3</sub> \|z – ...

The locus of z which satisfies the inequality log0.3|z – 1| > log0.3 |z – i| is given by-

A

x + y < 0

B

x + y > 0

C

x – y > 0

D

x – y < 0

Answer

x – y > 0

Explanation

Solution

Sol. log0.3 |z – 1| > log0.3 |z – i| Ž |z – 1| < |z – i|

[\ base < 1]

Ž |z – 1|2 < |z – i|2 Ž (z – 1)(zˉ1)(\bar{z}–1) < (z – i) (zˉ+i)(\bar{z} + i)

Ž zzˉ\bar{z}– z – zˉ\bar{z}+1 < zzˉ\bar{z} + iz – izˉ\bar{z} + 1 Ž (1 + i)z

+ (1 – i) zˉ\bar{z}> 0

Ž (z + zˉ\bar{z}) + i (z – zˉ\bar{z}) > 0 Ž (z+zˉ2)\left( \frac{z + \bar{z}}{2} \right)

(zzˉ2i)\left( \frac{z–\bar{z}}{2i} \right) > 0 Ž x – y > 0.