Solveeit Logo

Question

Mathematics Question on complex numbers

The locus of z such that ziz+i\frac{|z-i|}{|z+i|}= 2, where z = x+iy. is

A

3x2 + 3y2 +10y + 3

B

3x2 - 3y2 - 10y - 3 = 0

C

3x2 + 3y2 + 10y + 3 = 0

D

x2 + y2 - 5y + 3 = 0

Answer

3x2 + 3y2 + 10y + 3 = 0

Explanation

Solution

The correct option is: (A): 3x2 + 3y2 + 10y + 3 = 0.

Given: ∣ zi ∣=2∣ z +i

Hence: ∣​2 zi ​∣∣​2=∣∣​1 z +i ​∣∣​2

This simplifies to: x 2+(y −1)2=4(x 2+(y +1)2)

Further simplifying: 3 x 2+4(y +1)2−(y −1)2=0

And: 3 x 2+3 y 2+8 y +2 y +4−1=0

Finally: 3x2 + 3y2 + 10y + 3 = 0.