Question
Mathematics Question on complex numbers
The locus of z such that ∣z+i∣∣z−i∣= 2, where z = x+iy. is
A
3x2 + 3y2 +10y + 3
B
3x2 - 3y2 - 10y - 3 = 0
C
3x2 + 3y2 + 10y + 3 = 0
D
x2 + y2 - 5y + 3 = 0
Answer
3x2 + 3y2 + 10y + 3 = 0
Explanation
Solution
The correct option is: (A): 3x2 + 3y2 + 10y + 3 = 0.
Given: ∣ z − i ∣=2∣ z +i ∣
Hence: ∣2 z − i ∣∣2=∣∣1 z +i ∣∣2
This simplifies to: x 2+(y −1)2=4(x 2+(y +1)2)
Further simplifying: 3 x 2+4(y +1)2−(y −1)2=0
And: 3 x 2+3 y 2+8 y +2 y +4−1=0
Finally: 3x2 + 3y2 + 10y + 3 = 0.