Solveeit Logo

Question

Question: The locus of z satisfying the inequality \(\log_{1/3}|z + 1| > \log_{1/3}|z - 1|\) is...

The locus of z satisfying the inequality

log1/3z+1>log1/3z1\log_{1/3}|z + 1| > \log_{1/3}|z - 1| is

A

R(z)<0R(z) < 0

B

R(z)>0R(z) > 0

C

I(z)<0I(z) < 0

D

None

Answer

R(z)<0R(z) < 0

Explanation

Solution

Sol. log1/3z+1>log1/3z1\log_{1/3}|z + 1| > \log_{1/3}|z - 1|

z+1<z1|z + 1| < |z - 1|x2+1+2x+y2<x2+12x+y2x^{2} + 1 + 2x + y^{2} < x^{2} + 1 - 2x + y^{2}

x<0x < 0Re(z)<0.{Re}(z) < 0.