Solveeit Logo

Question

Mathematics Question on complex numbers

The locus of zz satisfying the inequality z+2i2z+i<1\frac{z + 2i}{2z + i} < 1 , where z=x+iyz = x + iy, is

A

x2+y2<1x^2 + y^2 < 1

B

x2y2<1x^2 - y^2 < 1

C

x2+y2>1x^2 + y^2 > 1

D

2x2+3y2<12x^2 + 3y^2 < 1

Answer

x2+y2>1x^2 + y^2 > 1

Explanation

Solution

Let z=x+iyz = x + iy
Given, z+2i2z+i<1\frac{z + 2i}{2z + i} < 1
x2+y+222x2+2y+12<1\Rightarrow \, \, \, \frac{\overline{x^2 + y + 2^2}}{\overline{ 2x^2 + 2y + 1^2}} < 1
x2+y2+4+4y<4x2+4y2+1+4y\Rightarrow \, \, x^2 + y^2 + 4 + 4y < 4x^2 + 4y^2 + 1 + 4y
3x2+3y2>3\Rightarrow \, \, 3x^2 + 3y^2 > 3
x2+y2>1\Rightarrow \, \, x^2 + y^2 > 1