Solveeit Logo

Question

Question: The locus of the vertices of the family of parabolas $y = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a$ is...

The locus of the vertices of the family of parabolas y=a3x23+a2x22ay = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a is:

A

xy = 105/64

B

xy = 64/105

C

xy = 35/16

D

xy = 16/35

Answer

xy = 105/64

Explanation

Solution

The given equation is y=a3x23+a2x22ay = \frac{a^3x^2}{3} + \frac{a^2x}{2} - 2a.

To find the vertex, we differentiate with respect to xx: dydx=2a3x3+a22\frac{dy}{dx} = \frac{2a^3x}{3} + \frac{a^2}{2}.

Setting dydx=0\frac{dy}{dx} = 0: 2a3x3+a22=0\frac{2a^3x}{3} + \frac{a^2}{2} = 0.

Assuming a0a \neq 0, we get 2ax3=12\frac{2ax}{3} = -\frac{1}{2}, so a=34xa = -\frac{3}{4x}.

Substitute this back into the original equation: y=13(34x)3x2+12(34x)2x2(34x)y = \frac{1}{3}\left(-\frac{3}{4x}\right)^3x^2 + \frac{1}{2}\left(-\frac{3}{4x}\right)^2x - 2\left(-\frac{3}{4x}\right) y=13(2764x3)x2+12(916x2)x+64xy = \frac{1}{3}\left(-\frac{27}{64x^3}\right)x^2 + \frac{1}{2}\left(\frac{9}{16x^2}\right)x + \frac{6}{4x} y=964x+932x+32xy = -\frac{9}{64x} + \frac{9}{32x} + \frac{3}{2x} y=9+18+9664xy = \frac{-9 + 18 + 96}{64x} y=10564xy = \frac{105}{64x}

Thus, the locus is xy=10564xy = \frac{105}{64}.