Solveeit Logo

Question

Mathematics Question on Parabola

The locus of the vertices of the family of parabola 6y=2a3x2+3a2x12a6y = 2a^3x^2 + 3a^2x - 12a is

A

xy=10564xy=\frac{105}{64}

B

xy=64105xy=\frac{64}{105}

C

xy=3516xy=\frac{35}{16}

D

xy=1635xy=\frac{16}{35}

Answer

xy=10564xy=\frac{105}{64}

Explanation

Solution

Given, 6y=2a3x2+3a2x12a...(1)6y=2a^{3}x^{2}+3a^{2}x-12a\quad...\left(1\right) For a vertex of given equation, dydx=0\frac{dy}{dx} = 0 6dydx=4a3x+3a2=0\therefore 6 \frac{dy}{dx} = 4a^{3}x+3a^{2}= 0 a=34x\Rightarrow a= -\frac{3}{4x} Putting the value of a in (1)\left(1\right), we get 6y=2(34x)x2+3(34x)212(34x) 6y=2\left(\frac{-3}{4x}\right)x^{2} + 3\left(-\frac{3}{4x}\right)^{2} -12\left(-\frac{3}{4x}\right) 6y=2732x+2716x+364x\Rightarrow6y= -\frac{27}{32x}+\frac{27}{16x}+\frac{36}{4x} 192xy=27+54+288\Rightarrow 192xy = -27+54+288 xy=315192\Rightarrow xy= \frac{315}{192} =10564= \frac{105}{64}