Question
Mathematics Question on Parabola
The locus of the vertices of the family of parabola 6y=2a3x2+3a2x−12a is
A
xy=64105
B
xy=10564
C
xy=1635
D
xy=3516
Answer
xy=64105
Explanation
Solution
Given, 6y=2a3x2+3a2x−12a...(1) For a vertex of given equation, dxdy=0 ∴6dxdy=4a3x+3a2=0 ⇒a=−4x3 Putting the value of a in (1), we get 6y=2(4x−3)x2+3(−4x3)2−12(−4x3) ⇒6y=−32x27+16x27+4x36 ⇒192xy=−27+54+288 ⇒xy=192315 =64105