Solveeit Logo

Question

Question: The locus of the poles of normal chords of the ellipse \(\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}}\...

The locus of the poles of normal chords of the ellipse

x2a2+y2b2\frac{x^{2}}{a^{2}} + \frac{y^{2}}{b^{2}} = 1 is-

A

a6x2b6y2\frac{a^{6}}{x^{2}} - \frac{b^{6}}{y^{2}}= (a2 + b2)2

B

a6x2+b6y2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}} = (a2 – b2)2

C

a6x2+b6y2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}}= (a2 + b2)2

D

None of these

Answer

a6x2+b6y2\frac{a^{6}}{x^{2}} + \frac{b^{6}}{y^{2}} = (a2 – b2)2

Explanation

Solution

Let (a, b) be the pole of the normal

ax sec f – by cosec f = a2 – b2 … (1)

Then the pole of (a, b) with respect to the ellipse viz, xαa2+yβb2\frac{x\alpha}{a^{2}} + \frac{y\beta}{b^{2}}= 1 … (2)

Must represent the same straight line as (1).

On comparing equations (1) and (2), we get

a3secφα\frac{a^{3}\sec\varphi}{\alpha} = = a2 – b2

\ cos f = a3α(a2b2)\frac{a^{3}}{\alpha(a^{2} - b^{2})} and sin f = b3β(a2b2)\frac{b^{3}}{\beta(a^{2} - b^{2})}

On squaring and adding , we have

1 = a6α2(a2b2)2\frac{a^{6}}{\alpha^{2}(a^{2} - b^{2})^{2}} + b6β2(a2b2)2\frac{b^{6}}{\beta^{2}(a^{2} - b^{2})^{2}}

Ž a6α2\frac{a^{6}}{\alpha^{2}} + b6β2\frac{b^{6}}{\beta^{2}} = (a2 – b2)2.

Hence the locus of (a, b) isa6x2\frac{a^{6}}{x^{2}} + b6y2\frac{b^{6}}{y^{2}} = (a2 – b2)2.

Hence (2) is the correct answer.